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Abstract. We consider thermodynamic properties, e.g. specific heat and magnetic sus-
ceptibility, of alternating Heisenberg spin chains. Due to a hidden Ising symmetry, these
chains can be decomposed into a set of finite chain fragments. The problem of finding the
thermodynamic quantities is effectively separated into two parts. First we deal with finite
objects; secondly we can incorporate the fragments into a statistical ensemble. As functions
of the coupling constants, the models exhibit special features in the thermodynamic quantities,
e.g. the specific heat displays double peaks at low enough temperatures. These features stem
from first-order quantum phase transitions at zero temperature, which have been investigated in
the first part of this work.

1. Introduction

This work is a continuation of our preceding paper [1], which is devoted to the ground-
state properties of alternating Heisenberg spin chains. There we investigated 1d systems
described by Hamiltonians (model A)

H(a) = −J1

∑
〈ρ,r〉

s(ρ) · (σ(r1)+ σ(r2))− J0

∑
〈r1,r2〉

σ(r1) · σ(r2) (1.1)

or (model B)

H(b) = −J1

∑
〈ρ,r〉

(s(ρ1)+ s(ρ2)) · (σ(r1)+ σ(r2))− J ′0
∑
〈ρ1,ρ2〉

s(ρ1) · s(ρ2)

− J0

∑
〈r1,r2〉

σ(r1) · σ(r2).

Two kinds of lattice site, denoted byρ and r, alternate within the chain. In both models,
sites r1 and r2 are occupied by nearestσ -spins (σ = 1/2), which can be interpreted as
forming a dumb-bell configuration perpendicular to the chain direction.r denotes their
common in-chain coordinate. In model A,ρ-coordinates contain singles-spins, whereas in
model B theρ-sites are also occupied by dumbbells ofs-spins with coordinatesρ1 andρ2.
A simple interpretation of model B is an alternating chain of orthogonal dumb-bells. In this
work we concentrate on model A. However, the methods used below can be reformulated
for model B as well.

Two spins,σ(r1) andσ(r2), are incorporated into thecompound spinS(r) = σ(r1)+
σ(r2), which is either 0, or 1. This reveals a hidden Ising symmetry of the original
Heisenberg model (1.1). In fact, theJ1 exchange term in (1.1) does not generate transitions
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between the total spin states 0 and 1 of any compound spin. Hamiltonian (1.1) can be
rewritten in a more suitable form asH(a) = H1+H(a)

0 , where

H1 = −J1

∑
〈ρ,r〉

s(ρ) · S(r) (1.2)

and

H
(a)

0 = −
1

2
J0

∑
r

S2(r). (1.3)

H
(a)

0 counts the self-energy of a compound spin.
We can use the following obvious strategy. Any configuration of spins is characterized

by intrinsic ‘defects’, i.e.r-sites, where the compound spin is zero. These ‘defects’, which
are controlled by theJ0-terms, cause the original chain to decompose into an ensemble of
finite chain fragments, which are decoupled from each other. Their structure can be defined
as follows. A fragment of lengthk (k > 1) is an alternating chain ofk+ 1 spin-s sites and
k spin-1 sites. Chain fragments are isolated from each other by a zero spin.

It is convenient to measure all energies in units ofJ1; the latter is supposed to be
negative. Thus we setJ1 = −1.

In [1] we observed successive first-order transitions governed byJ0 at zero temperature.
For model A withs = 1/2, it is a sequence〈0〉 → 〈1〉 → 〈∞〉, where a periodicity element
〈k〉 can be represented as(s, 1)k, s,0. For example,〈0〉 is the periodical alternating structure,
in which all r-sites are occupied by zero spins. For spinss = 3/2 ands = 2 the phase
transition sequence becomes〈0〉 → 〈1〉 → 〈2〉 → 〈3〉 → 〈4〉 → 〈∞〉. The first two
transitions, taking place atJ (0,1)0 andJ (1,2)0 , are well isolated from each other, and from
J (2,3)0 . The latter appears to be very close to the values ofJ (3,4)0 andJ (4,∞)0 .

One appropriate method for finding and classifying all of these transitions is based on
linear programming theory. For our particular problem it prescribes comparing the reduced
energies

1

k + 1
(εk − kJ0)

of isolated chain fragments(s, 1)k, s,0. εk is the ground-state energy of the Hamiltonian
H1 (see (1.2)) with open boundary conditions. It is convenient to introduce the following
decomposition ofεk:

εk = ke∞ + e0+ eint(k). (1.4)

In (1.4) e∞ is the energy per element (s, 1) of the perfectly periodic spin structure,e0 is
the energy due to the open ends, and the remaining part,eint(k), can be interpreted as the
interaction between the chain fragment ends, which goes to zero ask → ∞. Thus, a
succession of phase transitions is given by a broken line, which is concave upwards and
envelopseint(k) from below[1]. Two typical functionseint(k) are shown in figures 1(a) and
1(b). In the former,eint(k) is a monotonic function, and thus the system passes through
all intermediate phases from〈0〉 to 〈∞〉, whenJ0 increases from large negative values. In
figure 1(b), the enveloping function corresponds to a restricted number of transitions, which
is typical for mixed Heisenberg chains [1], but with increasing values ofs the minimum
becomes very shallow. Note that if HamiltonianH1 takes the form of an Ising Hamiltonian,
then eint(k) ≡ 0. In a spin-wave approximation fors > 3/2, this function belongs to the
type shown in figure 1(a).

Certainly, at non-zero temperature all phase transitions are smeared out. But thermo-
dynamic quantities may exhibit a crucial dependence on temperature in the vicinities of
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a

k

eint(k)

0

b
eint(k)

k0

Figure 1. Two examples of possible shapes ofeint versusk: (a) represents an infinite sequence
of transitions, 〈0〉 → 〈1〉 → 〈2〉 → · · · → 〈∞〉. In (b) a finite number of transitions,
〈0〉 → 〈1〉 → 〈2〉 → 〈3〉 → 〈∞〉, is realized. The dotted part of the line does not satisfy
the ‘concave upwards’ condition.

the criticalJ0-values. We start the next section with an example which will reveal some
peculiarities of the thermodynamics of these systems.

Besides analytic methods, we have used numerical complete diagonalization of finite
chain fragments. By utilizing globalSz-conservation we have been able to obtain all of
the energy eigenvalues of the chain fragments withk = 1, . . . ,6. The computations were
performed on an Ultra Enterprise 10000 computer manufactured by Sun Microsystems. This
is a parallel computer with 40 CPUs and 20 GByte of shared memory. All programs have
been implemented in C++.

2. The vicinity of the 〈0〉 → 〈1〉 transition

Let us consider the vicinity of the〈0〉 → 〈1〉 transition. Fors = 1/2 and zero temperature
the system undergoes the phase transition atJ0 = −2. At this value the ground state is
manyfold degenerate: chain fragments of unit length,k = 1, are embedded into the〈0〉
phase. This means that the distributions of ‘defects’ (zero spins atr-sites) is subject to
the following constraint: two ‘non-defect’ (spin-1) sites cannot be nearest neighbours at
the r-sites. They must be separated by at least one ‘defect’.The partition function at zero
temperature is the total number of all valid configurations. Let us assume thatZn counts
all of the configurations, which are realized between the sitesr = 0 andr = n, but that
the sitesr = 0 andr = n are fixed at zero spin†. This yields a recurrence relation for the
partition functionZ:

Zn = 2Zn−1+ Zn−2. (2.1)

The two terms on the r.h.s. of (2.1) correspond to the two possibilities ofr = n− 1 being
either a ‘defect’ or a ‘non-defect’ site. If it is a ‘defect’ site (the first term), we count all
configurations between the ‘defect’ sites,r = 0 andr = n− 1. The factor 2 is due to the
additional spin-1/2 at the siteρ = n− 1/2. This spin is enclosed by ‘defects’, so it isfree
or paramagnetic. The second term on the r.h.s. of (2.1) corresponds to the case in which
r = n − 1 is a ‘non-defect’ site. Since ‘non-defects’ are not allowed to be nearest neigh-
bours,r = n − 2 must contain a ‘defect’. Thus the configuration count of the remaining
part isZn−2. Evidently, the boundary conditions for (2.1) must be chosen asZ0 = 1 and
Z1 = 2.

† We label the sites of compound spins byinteger numbersr. For ρ, half-integers are reserved.
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Now we define an additional quantityDn, which counts the number of ‘non-defects’
between the spin singlets at sitesr = 0 andr = n, summed over all allowed configurations.
It satisfies the equation

Dn = 2Dn−1+Dn−2+ Zn−2. (2.2)

The first two terms on the r.h.s. of (2.2) are similar to those on the r.h.s. of equation (2.1).
The third term counts how many times the ‘non-defect’ atr = n − 1 appears in all valid
configurations. ForD, the boundary conditions areD0 = 0 andD1 = 0.

Let us discuss how equations (2.1) and (2.2) have to be modified in the case of non-
zero temperatures. If all terms inZn are preceded by their statistical weights, we can use
this quantity to calculate the partition function of a chain of lengthn with open boundary
conditions. Instead of the set{εk} (cf. (1.4)), one should use the set of free energies{φk}.
Since we consider the vicinity of the〈0〉 → 〈1〉 transition (i.e.J0 ' −2), only φ0 andφ1

enter the calculation. All other configurations are suppressed at low temperatures (T � 1).
Introducing Boltzmann factorswk = exp(−(φk − kJ0)/T ), and settingφ0 = −T ln 2 and
φ1 = −2, we arrive at the following modification of equations (2.1) and (2.2):

Zn = 2Zn−1+ wZn−2 w = w1 (2.3)

Dn = 2Dn−1+ w(Dn−2+ Zn−2). (2.4)

The solution of (2.3) is

Zn = c+λn+ + c−λn− λ± = 1±√1+ w.
For solving (2.4), we try theansatz

Dn = (a+ + nb+)λn+ + (a− + nb−)λn−.
For the concentration of spin-1 sites in long chains we obtain

x = lim
n→∞

Dn
nZn
= b+
c+
. (2.5)

The relationship betweenb+ andc+, which enter the leading terms ofDn andZn for n� 1,
can be directly derived from equation (2.4):

b+
c+
= w

λ2+ + w
= w

2(1+ w +√1+ w).

The physical quantities, such as the specific heat and the entropy, can straightforwardly
be calculated as derivatives of the free energy. In the thermodynamic limit, i.e. forn→∞,
the free energy per compound spin is simply

−T ln λ+ = −2+ J0

2
− T√

w

if 〈1〉 is favourable (w � 1). Otherwise, forw � 1 we arrive at the expression

−T ln 2− Tw
4
.

The magnetic susceptibility reflects the ground-state investigations of our former paper.
In fact, as long as the chain fragments of lengthk = 1 are in the spin-singlet state, only
‘isolated’ spin-1/2 sites, associated withk = 0, contribute a Curie-like susceptibility. It can
be expressed as a contribution of individual ‘isolated’ spins,µ2

B/4T , multiplied by their
concentration

1− 2b+/c+ = (1+
√

1+ w)/(1+ w +√1+ w).
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This exhibits ‘half-gap’ behaviour,∝ 1/
√
w, when w � 1, i.e., J0 > −2. This,

and the analogousw-dependence of the specific heat, can be interpreted in terms of an
equilibrium chemical reaction, in which any spin singlet (1/2, 1, 1/2) may transform into
two paramagnetic spins 1/2 and a ‘defect’.

In the vicinity of the〈0〉 → 〈1〉 transition, the results of this section are not only valid
for s = 1/2, but also for other spins on theρ-sites. The evident changes are as follows.

(i) φ1 = −(2s + 1), andJ0 varies around−(2s + 1).
(ii) φ0 = −T ln(2s + 1), resulting in

λ± = (s + 1/2)±
√
(s + 1/2)2+ w

and

b+
c+
= w/2

(s + 1/2)2+ w + (s + 1/2)
√
(s + 1/2)2+ w

.

(iii) A group of spins (s, 1, s), whose total spin value at low temperatures is practically
(2s − 1), is paramagnetic too, like an ‘isolated’ spins.

The Curie-like susceptibility is straightforwardly calculated as

µ2
B

3T
(2s(2s − 1)b+/c+ + s(s + 1)(1− 2b+/c+)).

3. General consideration

For s = 1/2, quantum fluctuations are efficient enough to ‘isolate’ the〈1〉 ↔ 〈∞〉 transition
from 〈0〉 ↔ 〈1〉. In reference [1] these zero-temperature transitions were estimated as
J (1,∞)0 = −0.910 andJ (0,1)0 = −2, respectively. Thus, at low temperatures we can
investigate the regions aroundJ (1,∞)0 and J (0,1)0 separately. In section 2 the subject of
interest is the competition of ‘defect’ and ‘non-defect’ sites, provided two ‘non-defects’
cannot be nearest neighbours, ifJ0 is aroundJ (0,1)0 . On the other hand, two ‘defects’ cannot
be nearest neighbours in the second critical range aroundJ (1,∞)0 at low temperatures. Instead
of dealing with ‘defect’ and ‘non-defect’ objects, let us use the convention of reference [1].
For convenience, chain fragments have been defined as follows. A chain fragment of length
k formally includes a spin-0 site from its right, so it can be represented as (1/2, 1)k(1/2, 0).
Conventionally, the nearest spin from the left of any chain fragment is also 0, but this spin
is incorporated into the fragment which lies on the l.h.s. of this site. In this classification,
(1/2, 0) is a chain fragment of zero length.

Now we can reformulate one of the statements mentioned above. In the second ‘critical’
range aroundJ (1,∞)0 , zero-length chain fragments are uncompetitive and may be neglected
at low temperatures. However, we shall see from the specific heat calculation that at
intermediate temperatures, e.g.T = 0.3, and forJ0 intermediate betweenJ (0,1)0 andJ (1,∞)0 ,
not only do chain fragments of unit length dictate thermodynamic properties, but also longer
chain fragments and zero-length fragments contribute significantly. Therefore we have to
take into account chain fragments of any length, and no special restrictions on the values
of J0 and temperature will be imposed.

The free energy of a chain fragment of lengthk can be written as a generalization of
equation (1.4):

φk = kf∞ + f0+ fint(k) (3.1)
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wheref∞, f0, andfint are temperature dependent. In this section, the configurational part
of the free energy will be determined by making use of recursive relations similar to (2.3)
and (2.4).

It is convenient to take the global configuration〈∞〉 as the ‘vacuum’ state. A zero
spin within this background is called a ‘hole’. If we ignore the interaction term in (3.1),
i.e. fint(k), then any ‘hole’ costs the free energy(J0 − f∞(T )) + f0(T ). In fact, the free
energy of a very long chain,nf∞(T ) + f0(T ), becomes(n − 1)f∞(T ) + 2f0(T ) + J0

if a ‘hole’ is inserted. For two ‘holes’ we obtain(n − 2)f∞(T ) + 3f0(T ) + 2J0, and
so on. However, this consideration is no longer valid if two ‘holes’ occupy nearest-
neighbour sites on ther-sublattice. Two such ‘holes’ give rise to a zero-length chain
fragment. In this case we obtain(n− 2)f∞(T )+ 2f0(T )+ 2J0, which can be subdivided
into (n− 1)f∞(T )+ 2f0(T )+ J0 and−f∞(T )J0. The latter should be interpreted as the
free energy of the zero-length chain fragment. Only the ‘holes’ which are separated by
a chain fragment of non-zero length and which do not have other ‘holes’ between them,
interact viafint(k; T ), wherek > 1 is the chain fragment length, or the number of spin-1
sites between thesenearestholes. We denote the statistical weight of a chain fragment of
lengthk by wk. Then starting with

w0 = exp
[−(J0− f∞)/T

]
and w1 = exp

[−(J0− f∞ + f0+ fint(1))/T
]

we obtain

wk = w1 exp
[
(fint(1)− fint(k))/T

]
k > 1 (3.2)

for longer chain fragments.
The recurrence relations for the partition function are obvious generalizations of (2.3):

Zn+1 = 2w0Zn + w1Zn−1+ w2Zn−2+ · · · + wkZn−k + · · · + wnZ0 n > 1. (3.3)

Each Zk counts all possible spin configurations with corresponding statistical weights
betweenr = 0 and r = k, while fixing the boundary compound spins atr = 0 and
r = k at zero. The prefactor 2 ofw0Zn on the r.h.s. of equation (3.3) is due to the spin-1/2
at siteρ = n+ 1/2. The boundary conditions for the set of partition functions areZ0 = 1
andZ1 = 2w0. The latter reflects the existence of a free spin-1/2 between two spin-0 sites.

The lower index inD(m)k has the same meaning as inZk, whereas the upper index is
related to the chain fragment length.D(m)k measures how often chain fragments of length
m occur between the sitesr = 0 and r = k. Of course, any spin configuration inD(m)k

picks up a corresponding statistical weight. The recurrence relations for the shortest chain
fragments,k = 0 and 1, have a structure which is similar to that of equation (3.3):

D(0)n+1 = 2w0Zn + 2w0D(0)n + w1D(0)n−1+ · · · + wkD(0)n−k + · · · + wnD(0)0 n > 1. (3.4)

D(1)n+1 = w1Zn−1+ 2w0D(1)n + w1D(1)n−1+ · · · + wkD(1)n−k + · · · + wnD(1)0 n > 1. (3.5)

The first terms on the r.h.s. of (3.4) and (3.5) are the contributions of the spin-0 and spin-1
sites atr = n, respectively. The boundary condition, which should be imposed onD(0),
readsD(0)0 = 0. ForD(1), we can setD(1)0 = 0 andD(1)1 = 0.

The generalization of the recurrence relations and boundary conditions to arbitrary chain
fragment lengthsm is also obvious:

D(m)n+1 = wmZn−m + 2w0D(m)n + w1D(m)n−1

+ · · · + wkD(m)n−k + · · · + wnD(m)0 for n > m
D(m)n = 0 for n 6 m.

(3.6)
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We define the concentrationxm of chain fragments of lengthm as the ratio of the
expectation value of their total numberNm = D(m)n /Zn to the total number ofr-sites,n:

xm = lim
n→∞

D(m)n

nZn
(3.7)

which is similar to equation (2.5). These concentrations must satisfy the conservation law

1=
∑
k>0

(k + 1)xk (3.8)

which states that the total number of compound spins, zeros and ones, is equal to the total
number ofr-sublattice sites.

The set of equations (3.3)–(3.6) allows us to perform a straightforward numerical
analysis. However, let us try an analytical approach by assuming that|fint(k)−fint(1)| � T

for all k > 1. Practically, this means that

T � |fint(1)| (3.9)

which is well satisfied atT > 0.15, as we shall see in section 4. In this approximation one
can setwk = w for all k > 1. By subtractingZn from Zn+1, we can rewrite equations (3.3)
in a simple form (n > 1):

Zn+1− (1+ 2w0)Zn + (2w0− w1)Zn−1 = 0. (3.10)

The analogous equations forD(0)k andD(1)k are similar, but have different r.h.s. and boundary
conditions:

D(0)n+1− (1+ 2w0)D(0)n + (2w0− w1)D(0)n−1 = 2w0(Zn − Zn−1) n > 1

D(0)0 = 0 D(0)1 = 2w0.
(3.11)

D(1)n+1− (1+ 2w0)D(1)n + (2w0− w1)D(1)n−1 = w1(Zn−1− Zn−2) n > 2

D(1)0 = D(1)1 = 0 D(1)2 = w1.
(3.12)

As in the case of equations (2.3) and (2.4), we look for solutionsZn, D(0)n , andD(1)n of the
form

c+λn+ + c−λn−
(a+ + b(0)+ n)λn+ + (a− + b(0)− n)λn−

and

(a+ + b(1)+ n)λn+ + (a− + b(1)− n)λn−
respectively. By inserting thisansatzwe obtain

λ+ = w0+ 1/2+
√

2w2
0 + w1+ 1/4

and the concentrations of chain fragments of lengthk = 1 and 0:

x1 = b
(1)
+
c+
= w1(λ+ − 1)

λ+(λ2+ + w1− 2w0)
(3.13)

x0 = b
(1)
+
c+
= 2w0λ+

w1
x1. (3.14)

Generalization of equation (3.13) form > 1 is straightforward: the analogue of (3.12)
now reads

D(m)n+1− (1+ 2w0)D(m)n + (2w0− w1)D(m)n−1 = w1(Zn−m − Zn−m−1) n > m+ 1

(3.15)
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while the boundary conditions can be written as

D(m)0 = · · · = D(m)m = 0 D(m)m+1 = w1.

The above-mentioned asymptotic behaviour ofZn andD(m)n allows us to determine the
concentrationxm as

xm = b
(m)
+
c+
= 1

(λ+)m−1
x1. (3.16)

It is not difficult to check the validity of the sum rule (3.8) with equations (3.14), (3.13),
and (3.16).

Just comparing two sets of equations, (3.12) and (3.15), one can conclude that the
knowledge of allD(1)k allows us to calculate any expression of higher rank, e.g.

D(m)n+m−1 = D(1)n . (3.17)

At lower temperatures it is necessary to bring in more Boltzmann factors. The simplest
extension of the temperature range

T � |fint(2)| (3.18)

does not impose restrictions on|fint(1)| any longer; the latter is not necessarily much smaller
than the temperature. This leads us to the introduction of three Boltzmann factors,w0, w1,
andwk = w2 ≈ w1 exp[fint(1)/T ], if k > 2 (see definition (3.2)). The numerical results
given in the next section will show that such a description is a good approximation for
T > 0.04. This is a systematic way to extend our approach to lower temperatures. By
using four Boltzmann factors, the system can be described down toT ≈ 0.01.

In appendix A we outline how the method developed above works in the general
situation, where temperature is restricted from below:T � |fint(k)|. In this case we
deal with a set of statistical weights

{w0, w1, w2, . . . , wk−1, wn = wk(n > k)}. (3.19)

4. Numerical computations

4.1. Chain fragments: zero-field results

By using complete matrix diagonalization we have computed all of the energy eigenvalues
of finite chain fragments up tok = 6. From these eigenvalues, the exact values of the free
energy for various temperatures have been calculated. We decompose the free energy into
an affine contributionkf∞+f0 and an ‘interaction’ contributionfint(k). This decomposition
is defined by

lim
k→∞

fint(k) = 0.

Table 1 shows computed values offint(k) for T = 0.02, T = 0.3, andT = 1.0.
Free-energy values fork = 5 andk = 6 have been used to determinef0 andf∞, so

fint(5) = fint(6) ≡ 0

for all temperatures. The accuracy of this approximation can be estimated from figures 2,
3, and 4, wherefint(k) decays quickly and smoothly to zero.

For low temperatures (T < 0.3), the k-dependence of the free energy is qualitatively
similar to the ground-state energy. This is illustrated in figure 2. As in the ground-state
energy, there is a clear minimum atk = 1, which corresponds to the phase transition
sequence〈0〉 → 〈1〉 → 〈∞〉 at T = 0.
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Table 1. The ‘interaction’ contributionfint(k) of the free energy forT = 0.02, T = 0.3, and
T = 1.0.

k T = 0.02 T = 0.3 T = 1.0

0 0.454 050 0.245 974 0.027 743
1 −0.074 381 0.002 104 0.000 148
2 −0.012 040 −9.540 148× 10−5 8.060 468× 10−7

3 −0.000 113 −5.336 452× 10−6 4.404 270× 10−9

4 0.000 476 −8.747 215× 10−8 2.376 055× 10−11

5 0.0 0.0 0.0
6 0.0 0.0 0.0

-0.1

-0.05

0

0.05

0.1

0 1 2 3 4 5 6

fint

k

T=0.02
T=0.1

Figure 2. The computed free energy versusk after subtracting the affine contributionkf∞ + f0

for low temperaturesT = 0.02 (full line) andT = 0.1 (dashed line)

For T > 0.3, the increase in temperature has led to the ground-state structure
being completely smeared out. Deviations from the affine contributionkf∞ + f0 decay
exponentially as a function ofk. This is shown in figure 3 forT = 0.5 andT = 1.0.

In the crossover region whereT ' 0.3, we observe an interesting phenomenon: as
shown in figure 4, the minimum of the free energy has moved fromk = 1 to k = 2. This
is due to the spin degeneracy of the chain fragment. The total spin of a chain fragment of
length k is sp = (k − 1)/2 for low temperatures, so the degeneracy is 2sp + 1 = k. This
yields

fdeg= −T ln k

as an additional contribution to the free energy. If we subtract this additional contribution
from fint, the minimum atk = 1 is restored. This contribution isonly relevant at intermediate
temperatures: at low temperatures it is suppressed by the prefactorT ; at high temperatures
the lnk contribution to the spin entropy is no more dominant. Indeed, the magnetic
behaviour of short chain fragments cannot be described by a single paramagnetic spin
sp. In other words, at high temperatures the spin–spin correlation length becomes smaller
thank.
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Figure 3. The ‘interaction part’ of the free energy as a function ofk for high temperatures
T = 1.0 (full line) andT = 0.5 (dashed line)
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Figure 4. The ‘interaction part’ of the free energy as a function ofk at the crossover temperature
Tc ' 0.3.

4.2. Chain fragments: magnetic susceptibility

By including small magnetic fields in the Hamiltonian, we have computed the zero-field
susceptibility fork = 1, . . . ,5 and various temperatures.

There are two contributions to the magnetic susceptibility.

(i) The paramagnetic contribution, which is

χp = 1

3T
sp(sp + 1) (4.1)

for low temperatures.
(ii) The contribution χa due to the antiferromagnetic correlations inside the chain

fragment. Though the exact form of this contribution is unknown, it is expected to be
approximately linear ink and only slowly varying as a function of temperature.
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Figure 5 shows the magnetic susceptibility as a function of inverse temperature for fragment
lengths k = 2, . . . ,5. The numerically computed values (various symbols) are almost
perfectly connected by the exactly known paramagnetic contribution (4.1) (lines), where
(k − 1)/2 has been inserted forsp. Please note that there are no fit parameters.
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Figure 5. The computed magnetic susceptibility fork = 2, . . . ,5 (symbols) and the para-
magnetic contribution (4.1) (lines)
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Figure 6. The computed magnetic susceptibility forT = 0.02, . . . ,0.06 (symbols) and the para-
magnetic contribution (4.1) (lines)

Therefore, at least for low temperatures, the susceptibility is well described by the
Curie law (4.1). For higher temperatures,χp is not strictly linear inT −1. Additionally,
with increasing temperature the antiferromagnetic contributionχa decays more slowly than
χp, soχa may become relevant for largerT .

Of course, the coincidence ofχ with χp for low temperatures can also be observed
when plottingχ as a function of the fragment lengthk. This is shown in figure 6 for
temperatures 0.026 T 6 0.06.

For high temperatures, the correlation length becomes smaller than the fragment length.
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In this case, the effective total spin can be interpreted as being composed of several
independent blocks of individual spins. The typical length of these blocks is the correlation
length ξ , so the effective total spin squaresp(sp + 1) is proportional toξk, in contrast to
the low-temperature situation, wheresp = (k − 1)/2. This results in alinear χ versus
k dependence, which is numerically confirmed, as shown in figure 7. There we have
successfully fitted affine functions

χh = a0(T )+ a1(T )k (4.2)

to the computed data points.
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Figure 7. The computed magnetic susceptibility forT = 1.0, 1.5, 2.0 (symbols) and fitted affine
functions (4.2) (lines)

If we were to extend figure 6 to large values ofk, we would certainly observe a
crossover from a parabolic to a lineark-dependence at sufficiently large fragment lengthk.
The crossover region depends on the temperature.

We finish this section by considering intermediate temperatures, for which the crossover
behaviour can be observed at finite fragment lengthk < 6. Figure 8 shows this intermediate-
temperature region. The crossover from quadratic to linear behaviour is governed by a
logarithmic correction

χi = b0(Ti)+ b1(Ti)k + b2(Ti) ln k (4.3)

which fitsχ(k) successfully for temperatures aroundT = 0.3. This behaviour is presumably
reminiscent of the crossover in the free energy, which takes place at the same temperature
range.

4.3. Mixed chains as ensembles of chain fragments

This part of the paper is a kind of synthesis of the analytic approach developed in section 3
and the numerical computations performed in section 4. We shall illustrate this by computing
the specific heat for two temperatures, low and intermediate,T = 0.02 andT = 0.3, and
for reasons which will be explained below, the magnetic susceptibility versusJ0 will be
calculated for intermediate temperaturesT = 0.1 andT = 0.3. Please note that in section 2
we derived an analytical expression for the magnetic susceptibility, which holds in the
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Figure 8. The computed magnetic susceptibility for intermediate temperatures (symbols) and
fitted functions (4.3) (lines)

vicinity of the 〈0〉 → 〈1〉 transition, where all contributions of chain fragments of length
k > 2 can be neglected, i.e. at low enough temperatures.

The specific heat per compound spin is calculated as

C = −T ∂
2f

∂T 2

wheref is the total free energy of the alternating chain. In the thermodynamic limit, the
partition function is given by the logarithm of the maximum rootλmax of the polynomial
(A.3). The ‘reference state’ in the derivation of the partition function is the perfect〈∞〉-
structure, so the complete free energy is given by

f = −T ln(λmax)+ f∞. (4.4)

According to table 1 we have the estimate

|fint(k)| � 0.02 for k > 3.

Therefore it is sufficient to work with four different Boltzmann weights,w0, . . . , w3. (At
T = 0.3, this approximation is even more accurate.) The polynomial (A.3) specializes to

λ4− (1+ 2w0)λ
3+ (2w0− w1)λ

2+ (w1− w2)λ+ (w2− w3) = 0.

Values forf∞ andw0, . . . , w3 have been obtained from the numerical results outlined in
subsection 4.1.

Figure 9 shows the resulting specific heat as a function ofJ0 for T = 0.02. As expected,
the most interesting features can be found in the regions aroundJ (0,1)0 andJ (1,∞)0 . In order
to understand the double-peak structure, which is shown in the inset, consider the expression

f (T ) =
∑
k>0

xk(T )φk(T )

for the total free energy of the alternating chain. As indicated, both the concentrationsxk
and the free energiesφk of the finite fragments depend on temperature, so the specific heat
involvesxk itself and its first and second derivatives. At low temperatures,xk is a step-like
function, which qualitatively explains the splittings of the peaks and their shapes.
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Figure 9. The specific heat of the full alternating chain as a function ofJ0 at T = 0.02. The
inset shows the fine double-peak structure at aroundJ (1,∞)0 . Note that forJ0 > −0.7 the
specific heat approaches a non-zero value (temperature dependent!), which is the specific heat
of the perfect alternating chain· · ·–1/2–1–1/2–1–· · ·.
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Figure 10. The specific heat of the full alternating chain as a function ofJ0 at T = 0.3. It
decays to zero for large negativeJ0; e.g.C ≈ 0.02 atJ0 = −4.

At T = 0.3, the increase in temperature has led to the fine structure at aroundJ (0,1)0 and
J (1,∞)0 being smeared out. The two regions are not isolated from each other; nevertheless
the double-peak structure is still visible in figure 10.

Figures 9 and 10 illustrate the dependence of the specific heat on the interior coupling
constantJ0. The temperature dependence ofC will be published in future work.

Calculation of the magnetic susceptibility per compound spin is straightforward. It is
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simply given by

χ =
∑
k>0

xkχk (4.5)

whereχk is the susceptibility of a finite chain fragment of lengthk. The concentrationsxk
according to (A.8) and (A.10) are computed by specializing to just four different Boltzmann
weights. χ0 is the susceptibility of an isolated paramagnetic spin-1/2. In units ofµ2

B ,
χ0 = 1/4T . χ1, . . . , χ5 are known numerically from subsection 4.1. ForJ0 < J (1,∞)0 the
largest eigenvalueλmax � 1, so because of (A.10) we can safely cut off the summation
(4.5) after k = 5. As J0 approachesJ (1,∞)0 , all concentrationsxk for finite k quickly
decay to zero, as〈∞〉 becomes the dominating configuration. The susceptibilityχ∞ of
this configuration is unknown forT = 0.02, but we can extrapolate it easily for those
temperatures for whichχ versusk is in the linear regime. From the calculations performed
in subsection 4.2,χ∞ per compound spin can be estimated as follows:

T = 0.1: χ ′ = lim
k→∞

1

k
χk ≈ 6.70

T = 0.3: χ ′ = lim
k→∞

1

k
χk ≈ 1.60.

(4.6)

Unfortunately, the convergence of the series (4.5) is very bad ifJ0 > J (1,∞)0 . At
intermediate temperatures, this problem can be circumvented by making use of the sum
rule (3.8) and the relations

λmax→ 1 for increasingJ0

xk ∝ λ−kmax for largek

χk ∝ k for largek.

This procedure is illustrated in appendix B. However, in order to obtain reasonable results
one needs to know the whole set ofχk before thek-dependence becomes linear. There is
no problem in the cases of temperaturesT = 0.3 andT = 0.1 (cf. figure 8), but the set of
χk at T = 0.02 is too far from the linear regime (see figure 6).

In figures 11 and 12, which show the magnetic susceptibility forT = 0.1 andT = 0.3,
we have used figure 8 as a prerequisite, i.e. we extracted the fragment susceptibilities
χ0, . . . , χ5, and the asymptotic slopeχ ′. Figures 11 and 12 have the correct asymptotics:
at large negativeJ0 the susceptibility approaches 1/(4T ), while at large positiveJ0 it is in
accordance with (4.6).

5. Summary and forward look

In this work we have combined analytical and numerical methods for calculating
thermodynamical properties of alternating Heisenberg chains. Interest in these spin systems
is not purely academic. In fact, recent progress in the observation of quantum effects for
quasi-one-dimensional antiferromagnets (see e.g. [2] and [3]) has been commonly made
by physicists and crystal growth experts. It is outside the scope of the present work to
recommend some specific compounds which might be good candidates for exhibiting mixed
chains with such a competitive behaviour. Schematically, their simplest representation is
given in our description with models A and B (see also the illustrations in [1]).

It should be emphasized that the unusual thermodynamic behaviour described in this
paper can be efficiently observed in those compounds for which the values of the coupling
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Figure 11. The magnetic susceptibility of the full alternating chain as a function ofJ0 at
T = 0.1.
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Figure 12. The magnetic susceptibility of the full alternating chain as a function ofJ0 at
T = 0.3.

constantsJ0 and J1 lead to competitive interactions. Then a major contribution to the
thermodynamic quantities comes from thermal changes of the fragment concentrationsxk.

(i) To make the basic ideas transparent, we employ a simple representation of these
chains: ‘compound spins’ and spin-1/2 sites alternate within the chain. They interact via
a coupling constantJ1. A compound spin consists of two spin-1/2 sites forming a dumb-
bell configuration perpendicular to the chain direction. The constituents of a dumb-bell
interact via the internal coupling constantJ0. The intrinsic state of a compound spin is
either spin-1 or spin-0, which gives rise to the hidden Ising symmetry of the Heisenberg
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chain. Spin-0 states can be treated as ‘defects’ with respect to the perfect alternating chain
· · ·–1/2–1–1/2–1–· · ·. These equilibrium ‘defects’ simply break the perfect chain into a set
of non-interacting chain fragments of finite lengths, whose general formula is( 1

2, 1)k 1
2 for

lengthk > 0.
(ii) At zero temperature, one of three ground states is realized, depending on the value

of J0 (J1, the antiferromagnetic exchange, is set to−1): 〈0〉, the regular structure of chain
fragments of lengthk = 0 for J0 < −2—this means that all compound spins are zero;
〈1〉, the regular structure of chain fragments of lengthk = 1 for −2 < J0 < −0.910—
i.e. compound spins 0 and 1 alternate with each other;〈∞〉, there is only one ‘fragment’
of infinite length for−0.910 < J0—i.e. all compound spins are 1. Although the first-
order transitions governed byJ0 are smeared out at non-zero temperature, thermodynamic
quantities display a strong dependence onJ0 and temperature in the vicinities of the zero-
temperature critical values.

(iii) As a function of J0, the specific heat displays two peaks, which are reminiscent
of the zero-temperature transitions〈0〉 → 〈1〉 → 〈∞〉. As shown in figure 9, these peaks
are split at low temperatures. The origin of this fine structure is the step-like behaviour of
the fragment concentrationsxk, predominantlyx0 andx1. With increasing temperature, the
peaks become broader and overlap, but the local minima still indicate the vicinities of the
criticalJ0-values; cf. figure 10. The crucial dependence of the magnetic susceptibility onJ0

andT is illustrated in figures 11 and 12. Technically it is more difficult to computeχ(J0)

because of the poor convergence of the series (4.5). We have eliminated these difficulties
by making use of the sum rule (3.8).

(iv) All these pretransitional phenomena, which can be identified clearly, are provided
by the configurational contributions to thermodynamic quantities. We have developed an
analytic approach for calculating the free energy and the concentrations of chain fragments of
different lengths. This is achieved by solving polynomial equations, whose degree increases
at lower temperature. In fact, the hierarchical structure of the equations is regulated by
fint(k), i.e. the part of the free energy of a chain fragment of lengthk which can be inter-
preted as the interaction of fragment ends. From numerical computations we observed that
fint decays rapidly withk.

(v) For other alternating chains, in which the non-compound sites are occupied by
higher spinss instead of 1/2, there are several successive zero-temperature transitions with
increasingJ0. The last one is〈4〉 → 〈∞〉 which occurs ifs > 3/2. For these chains,
the occurrence of several peaks in the specific heat would be possible. However, very
low temperatures are needed to isolate some peaks: although the successive transitions
〈0〉 → 〈1〉 and 〈1〉 → 〈2〉 are sufficiently separated, the distance between the transitions
〈3〉 → 〈4〉 and〈4〉 → 〈∞〉 is only1J0 ∼ 10−3.

(vi) To investigate the thermodynamics of alternating chains withs > 1/2, other methods
could be used instead of exact numerical diagonalization. A modification of the spin-wave
approximation, which can be adjusted to our problem, has been proposed by Takahashi
[4]. In [5] and [6], the quantum transfer matrix of exactly solvable spin chains has been
investigated in order to calculate thermodynamic quantities. A combination of this approach
and numerical methods could be applied to our problem.

(vii) Generalization to higher dimensions is straightforward: for instance in two
dimensions, the ‘white’ squares of a chequerboard lattice contain single spins, while the
‘black’ ones are occupied by compound spins. Competition may again reveal a hidden
Ising-like variable and possible two-dimensional superstructures. Of course, similar models
can be constructed on any bipartite lattice.
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Appendix A

As shown in section 4,fint(k) decays rapidly at high temperatures. But even at very low
temperatures,T = 0.02, we have the estimate

|fint(k)| � T for k > 3.

According to the method developed in section 3, it is sufficient to introduce the set of
Boltzmann weights:

{w1, w2 = w1 exp[(fint(1)− fint(2))/T ], w3 = w1 exp[fint(1)/T ], wn = w3(n > 3)}.
In this appendix we outline the procedure for the general case, where all statistical

weights (3.19) are taken into account.
If we substituten − 1 for n in (3.3) and subtract the resulting expression from the

original equation (3.3) we arrive at

Zn+1− (1+ 2w0)Zn + (2w0− w1)Zn−1+ (w1− w2)Zn−2

+ (w2− w3)Zn−3+ · · · + (wk−1− wk)Zn−k = 0

which is a generalization of (3.10). It can be rewritten in compact form:

Rk+1Zn+1 = 0 n > k (A.1)

if the linear operator

Rk+1fn+1 ≡ fn+1− (1+ 2w0)fn + (2w0− w1)fn−1

+ (w1− w2)fn−2+ · · · + (wk−1− wk)fn−k (A.2)

is introduced. Directly related to the operatorRk+1 is the characteristic equation

Pk+1(λ) ≡ λk+1− (1+ 2w0)λ
k + (2w0− w1)λ

k−1

+ (w1− w2)λ
k−2+ · · · + (wk−1− wk) = 0 (A.3)

whose maximal root,λmax, from the set{λ1, . . . , λk+1}, determines the asymptotic behaviour
of the partition function.

Analogous equations for theD(m)-functions can be derived and written in compact form
as

Rk+1D(m)n+1 = wm(Zn−m − Zn−m−1) (A.4)

where 2w0 must be substituted forwm for m = 0.
In our formalism it is sufficient to find theD(m)-functions up to rankk (m = 0, 1, . . . , k).

For higher rankm > k one obtains

D(m)n+m−k = D(k)n . (A.5)

This relationship becomes clear from the form of equations (A.4) form > k, where
wm = wk.

An obviousansatzfor solving equations (A.1) is

Zn =
k+1∑
i=1

ciλ
n
i (A.6)
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whereas for the solutions of equations (A.4) we use

D(r)n =
k+1∑
i=1

(a
(r)
i + b(r)i n)λni r = 0, 1, . . . , k. (A.7)

We do not need the complete set of coefficients{a(r)i , b(r)i , ci}, which can be calculated by
using the boundary conditions, but rather the set of ratios{b(m)max/cmax}, which yields the
concentrationsxm.

After inserting theansatz(A.7) into equation (A.4), we compare the leading terms,
which are given in terms of powers ofλmax. Neglecting all other terms is equivalent to
taking the thermodynamic limit. The basic result for the concentrationsxm reads

xm = b
(m)
+
c+
= wm(λmax− 1)λk−m−1

max

Qk+1(λmax)
(A.8)

where

Qk+1(λ) = λk+1− (2w0− w1)λ
k−1− 2(w1− w2)λ

k−2− · · · − k(wk−1− wk)
≡ λk+1 d

dλ

(
Pk+1(λ)

λk

)
. (A.9)

Combining equation (A.5) with result (A.8) yields

xk+m = 1

λmmax

xk. (A.10)

Appendix B

For the temperatures of interest we can write the susceptibility in the form

χ = x0χ0+ x1χ1+ x2χ2+ x3(χ3+ χ4λ
−1
max

+ χ5(λ
−2
max+ λ−3

max+ · · ·)+ χ ′λ−3
max(1+ 2λ−1

max+ 3λ−2
max+ · · ·)). (B.1)

The most singular behaviour is contained in the term which is proportional toχ ′. It can be
accurately evaluated by using the sum rule (3.8). Let us reorganize the terms of (B.1) into
three groups. The first one contains the non-singular contributions:

x0χ0+ x1χ1+ x2χ2+ x3(χ3+ χ4λ
−1
max+ χ ′λ−3

max(1+ 2λ−1
max+ 3λ−2

max)). (B.2)

The second one is pseudo-singular:
x3χ5

λmax(λmax− 1)
. (B.3)

Although the denominator in (B.3) vanishes ifλmax→ 1, the complete term remains finite,
sincex3→ 0 in this limit, too (cf. equation (A.8).) Due to the sum rule

x0+ 2x1+ 3x2+ x3(4+ 5λ−1
max+ 6λ−2

max+ · · ·) = 1

the last contribution

x3χ
′λ−6

max(4+ 5λ−1
max+ 6λ−2

max+ · · ·)
can be rewritten in the form

χ ′λ−6
max(1− x0− 2x1− 3x2) (B.4)

which evidently approachesχ ′ whenλmax→ 1.



5236 H Niggemann et al

References

[1] Niggemann H, Uimin G and Zittartz J 1997J. Phys.: Condens. Matter9 9031 and references therein
[2] Boucher J P and Regnault L P 1996J. Physique6 1939
[3] Garrett A W, Nagler S E, Tennant D A, Sales B C and Barnes T 1997Phys. Rev. Lett.79 745
[4] Takahashi M 1989Phys. Rev.B 40 2494
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